Abstract

This study was conducted to determine whether a cortisol surge mediates the enhanced expression of intestinal ornithine decarboxylase (ODC) in weanling pigs. Piglets were nursed by sows until 21 days of age, when 40 pigs were randomly assigned into one of four groups (10 animals/group). Group 1 continued to be fed by sows, whereas groups 2-4 were weaned to a corn and soybean meal-based diet. Weanling pigs received intramuscular injections of vehicle solvent (sesame oil), RU-486 (a potent blocker of glucocorticoid receptors; 10 mg/kg body wt), and metyrapone (an inhibitor of adrenal cortisol synthesis; 5 mg/kg body wt), respectively, 5 min before weaning and 24 and 72 h later. At 29 days of age, pigs were used to prepare jejunal enterocytes for ODC assay and metabolic studies. To determine polyamine (putrescine, spermidine, and spermine) synthesis, enterocytes were incubated for 45 min at 37 degrees C in 2 ml Krebs-bicarbonate buffer containing 1 mM [U-(14)C]arginine, 1 mM [U-(14)C]ornithine, 1 mM [U-(14)C]glutamine, or 1 mM [U-(14)C]proline plus 1 mM glutamine. Weaning increased intestinal ODC activity by 230% and polyamine synthesis from ornithine, arginine, and proline by 72-157%. Arginine was a quantitatively more important substrate than proline for intestinal polyamine synthesis in weaned pigs. Administration of RU-486 or metyrapone to weanling pigs prevented the increases in intestinal ODC activity and polyamine synthesis, reduced intracellular polyamine concentrations, and decreased villus heights and intestinal growth. Our results demonstrate an essential role for a cortisol surge in enhancing intestinal polyamine synthesis during weaning, which may be of physiological importance for intestinal adaptation and remodeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.