Abstract
The aim of this study was to compare the characteristics of esophageal cortical evoked potentials (CEP) following electrical and mechanical stimulation in healthy subjects to evaluate the afferents involved in mediating esophageal sensation. Similarities in morphology and interpeak latencies of the CEP to electrical and mechanical stimulation suggest that they are mediated via similar pathways. Conduction velocity of CEP to either electrical or mechanical stimulation was 7.9-8.6 m/s, suggesting mediation via thinly myelinated Adelta-fibers. Amplitudes of CEP components to mechanical stimulation were significantly smaller than to electrical stimulation at the same levels of perception, implying that electrical stimulation activates a larger number of afferents. The latency delay of approximately 50 ms for each mechanical CEP component compared with the corresponding electrical CEP component is consistent with the time delay for the mechanical stimulus to distend the esophageal wall sufficiently to trigger the afferent volley. In conclusion, because the mechanical and electrical stimulation intensities needed to obtain esophageal CEP are similar and clearly perceived, it is likely that both spinal and vagal pathways mediate esophageal CEP. Esophageal CEP to both modalities of stimulation are mediated by myelinated Adelta-fibers and produce equally robust CEP responses. Both techniques may have important roles in the assessment of esophageal sensory processing in health and disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.