Abstract

The corrosion kinetic models, incorporating the effects of chloride impurity and plastic deformation were proposed. Molten salt corrosion (MSC) damage was quantitatively described using the corrosion kinetic and the distance of materials points from the corrosion surface. By employing the elastic-viscoplastic theory with a hyperbolic-sine flow rule and the proposed damage model, a corrosion cracking mechanism-based model was developed and implemented using finite element (FE) analysis method. The corrosion-assisted cracking ahead of crack tips in accordance with the corrosion cracking mechanism was simulated. Furthermore, the predicted corrosion depth, corrosion morphologies, and multi-site corrosion cracking behaviors showed good agreement with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.