Abstract

Offshore platforms are important infrastructures that often face severe environmental conditions, such as corrosion, throughout their lifetime. This can continuously decrease their structural robustness. Despite the availability of many anti-corrosion strategies, there is still a need for a sound management scheme that can systematically address the lifetime operation of offshore platforms under corrosion. To address this, the work here proposes a corrosion- and repair-based reliability framework for the lifetime operation of offshore platforms. A fixed offshore platform is designed based on current design codes for severe environmental conditions in a given return period, and the effect of corrosion on the structure’s serviceability is modeled. The results show that the extent of the corrosion depth and damage in different years highly affects the ability of a repair to restore a damaged element to its original design strength. The results also show that the residual reliability of the structural members under the splash zone becomes almost zero after the first 10 years of the operation period, implying that these members require quick repair strategies. This study establishes a management program for fixed offshore platforms subjected to long-term corrosion by performing reliability analyses on the components of the platforms and evaluating the maintenance of the components in the splash zone. In the absence of commonly accepted contemporary industry practice standards, this study proposes a corrosion growth model based on API-RP-2A, DNV, and NORSOK standards that can effectively evaluate code-based structural designs. The framework developed here can help offshore platform owners in their decision-making process for corrosion-based safety analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call