Abstract
ABSTRACTWe study a classical system of identically charged counter-ions near a planar wall carrying a uniform surface charge density. The equilibrium statistical mechanics of the system depends on a single dimensionless coupling parameter. A new self-consistent theory of the correlation-hole type is proposed which leads to a modified Poisson–Boltzmann integral equation for the density profile, convenient for analytical progress and straightforward to solve numerically. The exact density profiles are recovered in the limits of weak and strong couplings. In contrast to previous theoretical attempts of the test-charge family, the density profiles fulfil the contact-value theorem at all values of the coupling constant and exhibit the mean-field decay at asymptotically large distances from the wall, as expected. We furthermore show that the density corrections at large couplings exhibit the proper dependence on coupling parameter and distance to the charged wall. The numerical results for intermediate values of the coupling provide accurate density profiles which are in good agreement with those obtained by Monte Carlo simulations. The crossover to mean-field behaviour at large distance is studied in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.