Abstract

The present research concentrates on the cumulative use of GPS and GIS technologies, which are excellent resources for analyzing and monitoring divergent physicochemical parameters in groundwater, including pH, TDS, EC, ORP, Ca+2, Mg+2, NO3-, F-, SO4-2, Cl- and PO4-3 with explicit regard to uranium. Garmin GPS is used to record the locations of the sampling points in the Godda study area. The research aims to offer a thorough understanding of the relationship between soil and water, its impact on public health and the extent to which water can be used in various ways based on its quality. Utilizing the inverse distance weighted (IDW) technique, it is examined how these groundwater parameters and the Water Quality Index(WQI) can be estimated spatially. Additionally, a correlation analysis of the water quality parameters is computed to estimate the local population's cancer risk living in the study area. Except for calcium and magnesium, which are present in excess concentrations throughout the study area with the highest values of 325 and 406mg/l, respectively at Amedihaand Meherma, the results showed that the maximum concentration parameters are within limits with the standard. The main reason might be the area's predominance of Alfisol soil type. The radioactive element uranium is found to be in a limited range. Chemo-toxicity and radiological risk assessment of the whole area lie far below the restricted cancer risk limit i.e., 30ppb with the highest concentration of 14ppb in the 'Sunderpahari' region, following the results obtained. The WQIfor the area ranges from 'good' to 'very poor.' The results were favorable but a few sites such as 'Boarijor' and its surroundings, require additional attention to enhance groundwater quality. Given uranium's low availability in groundwater the region's cancer risk assessment is below average.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call