Abstract

The development of a quasi-particle approach for an accurate yet efficient prediction of a complete ionization potential (IP) spectrum, from valence down to core electrons for the system of interest, is a long-cherished goal in quantum chemistry. Based on the physical understanding of the electron correlation and relaxation effects at the second order perturbation theory, we present here a correlation-relaxation-balanced direct method, dubbed CRB-MP2, via a parameter scaled scheme of the 2ph (two-particle, one-hole summation) and 2hp (two-hole, one-particle summation) terms. With almost no extra computational cost after a normal MP2 procedure, the CRB-MP2 method yields high quality valence and core IPs for a wide range of species. A direct approach for complete IP spectrum calculations with both computational accuracy and efficiency is therefore established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.