Abstract
In this paper, we develop a new correlation for the clean-bed filter coefficient (lambda0) for Brownian particles, for which diffusion is the main deposition mechanism. The correlation is based on numerical Lattice-Boltzmann (LB) simulations in random packings of spheres of uniform diameter. We use LB methods to solve the Navier-Stokes equation for flow and then the advection-diffusion equation for particle transport. We determine a correlation for an "equivalent" single-collector diffusion efficiency, etaD, so that we can compare our predictions to "true" single-collector correlations stemming from unit-cell modeling approaches. We compared our new correlation to experiments on the filtration of latex particles. For small particle diameters, 50 nm < dp < 300 nm, when gravity and interception are negligible, our correlation for etaD predicts measurements better than unit-cell correlations, which overestimate etaD. The good agreement suggests that the representation of three-dimensional transport pathways in porous media plays an important role when modeling transport and deposition of Brownian particles. To model larger particles, for which gravity and interception are important too, we build a correlation for the overall single-collector efficiency eta0 by adding corresponding etaG and nI terms from unit-cell correlations to our etaD model. The resulting correlation predicts experiments with latex particles of dp > 300 nm well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.