Abstract

Precise thermodynamic ionization constants K for 3-nitrophenol, 3,4-dichlorophenol, and 4-cyanophenol have been obtained in 1,4-dioxane-water mixtures (0–70% volume fraction in dioxane) at 25°C using a potentiometric method. The same information for another twelve cationic, neutral, and anionic phenols were taken from the literature. Three different methods were used to study the effects of the solvents on the ionization constants: one involves a single polarity parameter, E T(30); the next involves the Kamlet–Taft multiparametric method; and the last involves the preferential solvation model. The pK values follow the preferential solvation model, but the parameters obtained are highly correlated. Using the data for the phenol molecule as reference, a linear correlation between ΔpK and E T(30) has been used to develop a new method of obtaining pK values for any binary solvent composition, with only the pK in water known. The pK(s) values correlate with the molecular parameters for the dipolarity/polarizability of the solvent π* and its hydrogen-bond donor ability α. The preferential solvation parameter, f 12/1, correlates with the parameter for the hydrogen-bond donor ability of the solvent. All the phenols follow Hammett's equation and the reaction constants have been calculated for the different water–dioxane mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call