Abstract
In this paper the peak-locking phenomenon is investigated in the evaluation of digital PIV recordings by using a correlation-based interrogation algorithm with a discrete window shift and a correlation-based tracking algorithm. Statistical analyses indicate that nonuniformly distributed bias errors are the main cause of the peak-locking effect, and the amplitude variation of the random error is also an important source of the peak locking. Simulations and experimental examples demonstrate that very strong peak-locking effects exist for the correlation-based interrogation algorithm with discrete window shift in the cases of large particle images, small interrogation windows, and very small particle images. Very strong peak-locking effects are also observed for the correlation-based tracking algorithm when the particle images are overexposed, binarized, or very small. These strong peak-locking effects can be avoided without loss of evaluation accuracy by using a continuous window-shift technique in combination with the correlation-based interrogation algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.