Abstract

In their paper of 1993, Meyer and Neutsch established the existence of a 48-dimensional associative subalgebra in the Griess algebra G. By exhibiting an explicit counter example, the present paper shows a gap in the proof one of the key results in Meyer and Neutsch's paper, which states that an idempotent a in the Griess algebra is indecomposable if and only its Peirce 1-eigenspace (i.e. the 1-eigenspace of the linear transformation La:x↦ax) is one-dimensional. The present paper fixes this gap, and shows a more general result: let V be a real commutative nonassociative algebra with an associative inner product, and let c be a nonzero idempotent of V such that its Peirce 1-eigenspace is a subalgebra; then, c is indecomposable if and only if its Peirce 1-eigenspace is one-dimensional. The proof of this result is based on a general variational argument for real commutative metrised algebras with inner product.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.