Abstract

Wind and solar photovoltaic electricity production have already reached very low levels of levelized cost of energy (LCOE). Electrolyzers have already reached high efficiencies which are further improving, while costs are dramatically reducing. They are commercial products. Green hydrogen (H2) is the product of excess wind and solar electricity, specifically electricity that will be otherwise wasted, without the huge energy storage needed presently almost completely missing. By growing the installed capacity of wind and solar power plants, there will be a non-dispatchable production by wind and solar more often in excess, but sometimes also in defect, of the grid demand, in presence of limited energy storage. H2 is one of the key energy storage technologies needed to ensure grid stability. Production of H2 above what is needed to stabilize the grid significantly helps in applications such as land, and sea but especially air transport where the storage of energy onboard in a fuel is preferable to the storage of energy as electricity into a battery. The engineered diagenesis for H2 is unlikely better than green hH2. Apart from being a nice idea to be proven workable, with a technology readiness level (TRL) presently of zero, and thus impossible to be objectively compared with commercial products, the engineered diagenesis for H2, even if possible, also does not help with non-dispatchable renewable energy production. The concept may also have negative environmental aspects similar to fracking which have not been considered yet, and also bear huge economic costs in addition to environmental. Here we review the pros and cons of this novel technology, which once proven workable, which is not the case yet, should be considered as a possible way to complement rather than replace green H2 production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call