Abstract
Statistical association measures have been widely applied in information retrieval research, usually employing a clustering of documents or terms on the basis of their relationships. Applications of the association measures for term clustering include automatic thesaurus construction and query expansion. This research evaluates the similarity of six association measures by comparing the relationship and behavior they demonstrate in various analyses of a test corpus. Analysis techniques include comparisons of highly ranked term pairs and term clusters, analyses of the correlation among the association measures using Pearson's correlation coefficient and MDS mapping, and an analysis of the impact of a term frequency on the association values by means of z-score. The major findings of the study are as follows: First, the most similar association measures are mutual information and Yule's coefficient of colligation Y, whereas cosine and Jaccard coefficients, as well as χ2 statistic and likelihood ratio, demonstrate quite similar behavior for terms with high frequency. Second, among all the measures, the χ2 statistic is the least affected by the frequency of terms. Third, although cosine and Jaccard coefficients tend to emphasize high frequency terms, mutual information and Yule's Y seem to overestimate rare terms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Information Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.