Abstract

We study a northern part of the Corona Australis molecular cloud that consists of a filament and a dense sub-millimetre core inside the filament. Our aim is to measure dust temperature and sub-mm emissivity within the region. We also look for confirmation that near-infrared (NIR) surface brightness can be used to study the structure of even very dense clouds. We extend our previous NIR mapping south of the filament. The dust colour temperatures are estimated using Spitzer 160um and APEX/Laboca 870um maps. The column densities derived based on the reddening of background stars, NIR surface brightness, and thermal sub-mm dust emission are compared. A three dimensional toy model of the filament is used to study the effect of anisotropic illumination on near-infrared surface brightness and the reliability of dust temperature determination. Relative to visual extinction, the estimated emissivity at 870um is kappa(870) = (1.3 +- 0.4) x 10^{-5} 1/mag. This is similar to the values found in diffuse medium. A significant increase in the sub-millimetre emissivity seems to be excluded. In spite of saturation, NIR surface brightness was able to accurately pinpoint, and better than measurements of the colour excesses of background stars, the exact location of the column density maximum. Both near- and far-infrared data show that the intensity of the radiation field is higher south of the filament.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.