Abstract

The vesicant sulfur mustard (SM) is a chemical warfare agent that causes acute and chronic injury to the cornea and proximal anterior segment structures. Despite clinical evidence of SM-exposure causing unexplained retinal deficits, there have been no animal studies conducted to examine the retinal toxicity of this vesciant. The cardinal hallmark of retinal response to stressors or injury is the activation of reactive gliosis, a cellular process largely governed by Müller glia. Previously we showed that corneal exposure to sodium hydroxide elicits rapid induction of reactive gliosis and results in retinal degeneration in a dose-related manner. Based on this evidence, we hypothesized that the vesicant nitrogen mustard (NM), an analog of SM, may also elicit reactive gliosis. To test this idea, we developed a mouse model of NM ocular injury and investigated corneal and retinal effects focusing on citrullination, a posttranslational modification (PTM) of proteins. This PTM was recently linked to alkali injury and has also been shown to occur in retinal degenerative conditions. Here, we demonstrate that corneal exposure to 1% NM causes a synchronous activation of citrullination in both the cornea and retina with hypercitrullination becoming apparent temporally and manifesting with altered cellular expression characteristics. A key finding is that ocular citrullination occurs acutely as early as 1-h post-injury in both the cornea and retina, which underscores a need for expeditious interception of this acute corneal and retinal response. Moreover, exploiting dose response and temporal studies, we uncoupled NM-induced retinal citrullination from its induction of retinal gliosis. Our findings demonstrate that hypercitrullination is a common corneo-retinal mechanism that sensitizes the eye to NM injury and suggests that counteracting hypercitrullination may provide a suitable countermeasure to vesicant injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.