Abstract
A coalitional ranking problem is described by a weak order on the set of nonempty coalitions of a given agent set. A social ranking is a weak order on the set of agents. We consider social rankings that are consistent with stable/core partitions. A partition is stable if there is no coalition better ranked in the coalitional ranking than the rank of the cell of each of its members in the partition. The core-partition social ranking solution assigns to each coalitional ranking problem the set of social rankings such that there is a core-partition satisfying the following condition: a first agent gets a higher rank than a second agent if and only if the cell to which the first agent belongs is better ranked in the coalitional ranking than the cell to which the second agent belongs in the partition. We provide an axiomatic characterization of the core-partition social ranking and an algorithm to compute the associated social rankings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.