Abstract

Ovarian cancer remains the deadliest of all the gynecological malignancies due to the lack of reliable screening tools for early detection and diagnosis. Photoacoustic imaging or tomography (PAT) is an emerging imaging modality that can provide the total hemoglobin concentration (relative scale, rHbT) and blood oxygen saturation (%sO2) of ovarian/adnexal lesions, which are important parameters for cancer diagnosis. Combined with coregistered ultrasound (US), PAT has demonstrated great potential for detecting ovarian cancers and for accurately diagnosing ovarian lesions for effective risk assessment and the reduction of unnecessary surgeries of benign lesions. However, PAT imaging protocols in clinical applications, to our knowledge, largely vary among different studies. Here, we report a transvaginal ovarian cancer imaging protocol that can be beneficial to other clinical studies, especially those using commercial ultrasound arrays for the detection of photoacoustic signals and standard delay-and-sum beamforming algorithms for imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call