Abstract
The two N-terminal domains of the P-type copper ATPase, CopAa and CopAb, from Bacillus subtilis differ in their folding capabilities in vitro. Whereas CopAb has the typical βαββαβ structure and is a rigid protein, CopAa is found to be largely unfolded. A sequence analysis of the two and of orthologue homologous proteins indicates that Ser46 in CopAa may destabilise the hydrophobic core, as also confirmed through a bioinformatic energy study. CopAb has a Val in the corresponding position. The S46V and S46A mutants are found to be folded, although the latter displays multiple conformations. S46VCopAa, in both apo and copper(I) loaded forms, has very similar structural and dynamic properties with respect to CopAb, besides a different length of strand β2 and β4. It is intriguing that the oxygen of Thr16 is found close, though at longer than bonding distance, to copper in both domains, as it also occurs in a human orthologue domain. This study contributes to understanding the behaviour of proteins that do not properly fold in vitro. A possible biological significance of the peculiar folding behaviour of this domain is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.