Abstract

This paper introduces a new hybrid bio-inspired solver which combines elements from the recently proposed Coral Reefs Optimization (CRO) algorithm with operators from the Harmony Search (HS) approach, which gives rise to the coined CRO-HS optimization technique. Specifically, this novel bio-inspired optimizer is utilized in the context of short-term wind speed prediction as a means to obtain the best set of meteorological variables to be input to a neural Extreme Learning Machine (ELM) network. The paper elaborates on the main characteristics of the proposed scheme and discusses its performance when predicting the wind speed based on the measures of two meteorological towers located in USA and Spain. The good results obtained in these experiments when compared to naïve versions of the CRO and HS algorithms are promising and pave the way towards the utilization of the derived hybrid solver in other optimization problems arising from diverse disciplines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.