Abstract

A challenging and crucial issue in clinical studies in cancer involving gene microarray experiments is the discovery, among a large number of genes, of a relatively small panel of genes whose elements are associated with a relevant clinical outcome variable such as time-to-death or time-to-recurrence of disease. A semiparametric approach, using dependence functions known as copulas, is considered to quantify and estimate the pairwise association between the outcome and each gene expression. These time-to-event type endpoints are typically subject to censoring as not all events are realized at the time of the analysis. Furthermore, given that the total number of genes is typically large, it is imperative to control a relevant error rate in any gene discovery procedure. The proposed method addresses the two aforementioned issues by direct incorporation of the censoring mechanism and by appropriate statistical adjustment for multiplicity. The performance of the proposed method is studied through simulation and illustrated with an application using a case study in lung cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.