Abstract
A copper-lined (CL) primary coil, which is a composite of steel and copper, was devised for the electromagnetic flux compression technique to generate ultrahigh magnetic fields. The newly developed coil was found to be highly efficient for electromagnetic energy transfer and provided stabilization of the liner implosive motion with less influence from the current feeding gap. Dynamical current density distribution of the materials used in a primary coil was evaluated and applied to the design of the CL coil. Fields of up to 730 T were achieved by employing the CL coil with an energy injected from a 4 MJ condenser bank. This value is the highest achieved thus far in an indoor setting. The peak magnetic fields were found to depend significantly on the initial seed magnetic field. The optimum seed fields for obtaining the highest peak magnetic field were determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.