Abstract

Natural gas processing involves the separation of higher hydrocarbons (C2–C3) from methane, which is an important and energy-intensive operation. In this paper, we present a comprehensive study of an innovative copper-based MOF (Cu-MOF) for the separation of propane and ethane from methane. The material exhibits a high adsorption capacity and selectivity for C2–C3 hydrocarbons over methane, which is primarily due to its preferential C2–C3 hydrocarbon adsorption. The adsorption isotherms at ambient conditions showed a remarkable uptake of C3H8 of 134.0 cm3/g, as well as excellent selectivity of 204 and 9 for C3H8/CH4 and C2H6/CH4. According to the theoretical calculations, differences in van der Waals interactions and polarizability of the guest molecules were responsible for influencing separation performance. In addition, we conducted adsorption kinetic experiments, dynamic breakthrough, and cycling experiments to further examine the separation performance. Overall, this research establishes an energy-efficient adsorbent for upgrading natural gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call