Abstract

A new copper(II) fluorescent sensor 5,10,15,20-tetra((p-N,N-bis(2-pyridyl)amino)phenyl)porphyrin zinc (1) has been designed and synthesized by the Ullmann-type condensation of bromoporphyrin zinc with 2,2'-dipyridylamine (dpa) under copper powder as a catalyst as well as with K2CO3 as the base in a DMF solution. It consists of two separately functional moieties: the zinc porphyrin performs as a fluorophore, and the dpa-linked-to-zinc porphyrin acts as a selected binding site for metal ions. It displays a high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, Mg2+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, and Fe3+) and exhibits fluorescence quenching upon the binding of the Cu2+ ion with an "on-off"-type fluoroionophoric switching property. The detection limit is found to be 3.3 x 10(-7) M (3s blank) for Cu2+ ion in methanol solution, and its fluorescence can be revived by the addition of EDTA disodium solution. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of fluorescent sensors for metal ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call