Abstract

The hydrido copper(I) and silver(I) clusters incorporating 1,1-dicyanoethylene-2,2-dithiolate (i-MNT) ligands are presented in this paper. Reactions of M(I) (M = Cu, Ag) salts, [Bu(4)N](2)[S(2)CC(CN)(2)], with the anion sources ([Bu(4)N][BH(4)] for H(-), [Bu(4)N][BD(4)] for D(-)) in an 8:6:1 molar ratio in THF produce octanuclear penta-anionic Cu(I)/Ag(I) clusters, [Bu(4)N](5)[M(8)(X){S(2)CC(CN)(2)}(6)] (M = Cu, X = H, 1(H); X = D, 1(D); M = Ag, X = H, 2(H); X = D, 2(D)). They can also be produced from the stoichiometric reaction of M(8)(i-MNT)(6)(4-) with the ammonium borohydride. All four compounds have been fully characterized spectroscopically ((1)H and (13)C NMR, IR, UV-vis) and by elemental analyses. The deuteride-encapsulated Cu(8)/Ag(8) clusters of 1(D) and 2(D) are also characterized by (2)H NMR. X-ray crystal structures of 1(H) and 2(H) reveal a hydride-centered tetracapped tetrahedral Cu(8)/Ag(8) core, which is inscribed within an S(12) icosahedron formed by six i-MNT ligands, each in a tetrametallic-tetraconnective (μ(2), μ(2)) bonding mode. The encapsulated hydride in 2(H) is unequivocally characterized by both (1)H and (109)Ag NMR spectroscopies, and the results strongly suggest that the hydride is coupled to eight magnetically equivalent silver nuclei on the NMR time scale. Therefore, a fast interchange between the vertex and capping silver atoms in solution gives a plausible explanation for the perceived structural differences between the Ag(8) geometry deduced from the X-ray structure and the NMR spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call