Abstract

Redox-active ligands, owing to their electron reservoir capability, are well suited for the generation of coordinatively unsaturated metal complexes. We present here iridium complexes with an unsymmetrically substituted o-phenylenediamine ligand. A coordinatively unsaturated, formally iridium(iii) complex with the fully reduced o-phenylenediamide (or o-diamidobenzene) ligand was isolated and structurally characterized. This coordinatively unsaturated metal complex undergoes methylation reactions with a CH3+ source to form a new species with an Ir-CH3 bond. The redox-active Ir-CH3 complex performs the activation of CDCl3. The same activation reaction was also tested for other haloforms. In all types of reactions, the masked coordination site at the metal center and the electron reservoir behavior of the redox-active ligand are used for reactivity. Furthermore, we show that the aforementioned iridium(iii) complex performs redox-induced dihydrogen activation. This activation process was used to catalytically transfer the electrons and protons of dihydrogen to a substrate molecule. Crystallographic, spectroscopic, electrochemical, spectroelectrochemical and DFT methods were used to elucidate the geometric and the electronic structures of the metal complex in the various redox forms and to probe the mechanism of the investigated reactions. We demonstrate here how the cooperative behavior between a catalytically active metal center and a redox non-innocent ligand can be utilized to perform substrate bond activation and transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.