Abstract

In this study, we consider a parallel-batch machines scheduling game problem with deterioration jobs. The processing time of a job is a simple linear function of its starting time. Each of the parallel-batch machines can process up to B jobs simultaneously as a batch. The processing time of a batch is the processing time of the job with the longest deteriorating rate in the batch. All jobs in the same batch start and complete at the same time. Each job as an agent and its individual cost is the completion time of the job. We present a coordination mechanism for the scheduling game problem with social cost of minimizing the makespan in this paper, namely fully batch longest deteriorating rate. For this problem, we precisely quantify the inefficiency of Nash equilibrium by the logarithm price of anarchy. It is defined to be the ratio between the logarithm of social cost of the worst Nash equilibrium and the logarithm of social cost of an optimum schedule. In addition, we discuss the existence of Nash equilibrium and present an upper bound and lower bounds on the logarithm price of anarchy of the coordination mechanism. We show that the mechanism has a logarithm price of anarchy at most 2 − 1 / 3 m a x m , B − 2 / 3 B .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.