Abstract

Nature creates definite architecture with fluorescence capabilities and superior visual adaptation in many organisms, e.g., cephalopods, which differentiates them from their surroundings in the context of colour and texture that allows them to use this in defence, communication, and reproduction. Inspired by nature, we have designed a coordination polymer gel (CPG)-based luminescent soft material where the photophysical properties of the material can be tuned using a low molecular weight gelator (LMWG) with chromophoric functionalities. Herein, a water-stable coordination polymer gel-based luminescent sensor was created using zirconium oxychloride octahydrate as a metal source and H3TATAB (4,4',4''-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzoic acid) as a LMWG. The tripodal carboxylic acid gelator H3TATAB with a triazine backbone induces rigidity in the coordination polymer gel network structure along with the unique photoluminescent properties. The xerogel material can selectively detect Fe3+ and nitrofuran-based antibiotics (i.e., NFT) in aqueous medium through luminescent 'turn-off' phenomena. This material is a potent sensor because of the ultrafast detection of the targeted analytes (Fe3+ and NFT), with consistent efficacy in quenching activity up to five consecutive cycles. More interestingly, colorimetric, portable handy paper strip, thin film-based smart detection approaches (under an ultraviolet (UV) source) were introduced to make this material a viable sensor probe in real-time applications. In addition, we developed a facile method to synthesize CPG-polymer composite material that can be utilized as a transparent thin film to protect against UV radiation (200-360 nm), with approximately 99% absorption efficacy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.