Abstract

This paper introduces a current differential protection scheme, appropriate for application in medium voltage active distribution systems, where it is desired to keep the greatest possible number of loads and DG units energized during a fault. Conventional two-terminal percentage current differential relays are used to form successive, time-current-coordinated, differential protection zones. Multiple time-delayed differential elements in each protection zone guarantee coordination with the zone's lateral protection devices, as well as between successive differential protection zones. Sensitive time-delayed differential elements protect against relatively high-resistance faults, while instantaneous differential elements minimize protection speed whenever possible. Additional emergency differential elements deal with post-fault topology changes and breaker failure conditions enhancing the overall scheme's performance. The proposed scheme is applied to a model of real medium voltage distribution system with distributed generation, considering a ring topology operation. A detailed simulation-based study proves the applicability and enhanced performance of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.