Abstract

Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. In this paper, we show that an essential translation factor, Ded1p DEAD-box RNA helicase of yeast, directly affects replication of Tomato bushy stunt virus (TBSV). To separate the role of Ded1p in viral protein translation from its putative replication function, we utilized a cell-free TBSV replication assay and recombinant Ded1p. The in vitro data show that Ded1p plays a role in enhancing plus-strand synthesis by the viral replicase. We also find that Ded1p is a component of the tombusvirus replicase complex and Ded1p binds to the 3′-end of the viral minus-stranded RNA. The data obtained with wt and ATPase deficient Ded1p mutants support the model that Ded1p unwinds local structures at the 3′-end of the TBSV (−)RNA, rendering the RNA compatible for initiation of (+)-strand synthesis. Interestingly, we find that Ded1p and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is another host factor for TBSV, play non-overlapping functions to enhance (+)-strand synthesis. Altogether, the two host factors enhance TBSV replication synergistically by interacting with the viral (−)RNA and the replication proteins. In addition, we have developed an in vitro assay for Flock house virus (FHV), a small RNA virus of insects, that also demonstrated positive effect on FHV replicase activity by the added Ded1p helicase. Thus, two small RNA viruses, which do not code for their own helicases, seems to recruit a host RNA helicase to aid their replication in infected cells.

Highlights

  • All eukaryotic plus-stranded (+)RNA viruses have similar replication cycles in infected cells

  • Small RNA viruses do not code for their own helicases and they might recruit host RNA helicases to aid their replication in infected cells

  • The authors show that the Ded1p DEAD-box helicase, which is an essential translation factor in yeast, is recruited by Tomato bushy stunt virus (TBSV) into its replicase complex

Read more

Summary

Introduction

All eukaryotic plus-stranded (+)RNA viruses have similar replication cycles in infected cells. After translation of their mRNA-sense genomic RNA(s), the viral RNA and the viral replication proteins are recruited to the site of viral replication in membranous compartments. After the assembly of the membranebound viral replicase complexes (VRC), the viral replicase uses the viral RNA as a template to produce complementary (2)RNA. This is followed by (+)-strand synthesis in an asymmetric manner, producing excess amounts of (+)-strand progeny, which is released from replication for other viral processes. The functions of host factors in (+)RNA virus replication are known only for a small number of host factors [1,2,3,4,5,6,7,8,9]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.