Abstract

The novel Underwater Wireless Sensor Network (UWSN) can contribute to monitor and explore aquatic environments. But, communicating in these environments is still hard and has many challenges. For example, optical and electromagnetic waves deteriorate from high-attenuation. Moreover, acoustic communication has a large packet error rate and low throughput. A large number of solutions to improve aquatic communication refers to routing protocols, medium access control protocols, and designing acoustic modems. Cooperative communication explores the broadcast nature of wireless transmission and enhances its performance. However, cooperative communication has not been fully explored in UWSNs. In this work, we present COPPER, a Cooperative Protocol for Pervasive Underwater Acoustic Networks. COPPER considers LLC and MAC sub-layers and operates synchronously or asynchronously over Time Division Multiple Access using a selective repeat ARQ scheme. COPPER exploits the broadcast nature of wireless communication and, sensor nodes that are idle can operate as a relay, enhancing communication by space diversity. Simulation results show that COPPER improves network performance. For example, the network goodput improves by 17% and the packet error rate decreases by 65%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.