Abstract
With the popularity of shared bicycles in urban areas, more and more residents choose this fast and convenient mode of transportation for short-distance travel. By optimizing the layout of shared bicycle parking areas and delivery quantity, the investment cost of shared bicycle enterprises can be effectively reduced, and the convenience of residents' travel can be improved at the same time. In this paper, we develop a collaborative optimization model for the layout of the shared bicycle parking area and delivery quantity, aiming at minimizing the walking distance of residents and the investment cost of enterprises, while considering the constraints of the parking area's attractive range and the number of bicycles placed. Aiming at the characteristics of this mixed integer nonlinear problem, an improved genetic algorithm incorporating symmetric individual precision control mechanism is designed. Finally, taking the planned area between the Second Ring Road and the Third Ring Road in the northern part of Jin-niu District, Chengdu as the background, the proposed collaborative optimization model for the layout of shared bicycle parking areas and delivery quantity is applied to a real scene. The results show that after optimization, the number of parking areas is reduced by 2, and the total investment cost is reduced by about 12.2%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.