Abstract

ABSTRACT This study proposed an on-ramp cooperative control strategy for connected and automated vehicles (CAVs) based on the virtual platoon method. First, the formation rules of the virtual platoon and merging conditions of the vehicles were introduced. Different control strategies were then arranged for different types of vehicle combinations in the virtual platoon. Merging speed control was proposed for vehicle combinations in different lanes. The simulation results showed that merging speed control effectively increases vehicle speed and reduces fuel consumption and average pollutant emissions. In the typical macroscopic simulation, the average speed of vehicles with merging speed control increased by 25%, while fuel consumption and average pollutant emissions decreased by 31.4% and 52%. A longer communication area, shorter desired gap headway, and smaller flow rate can lead to higher vehicle speed, lower fuel consumption and pollutant emissions. Fuel consumption and pollutant emissions are inversely proportional to the steady speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.