Abstract
The dissociation processes of clotrimazole (CLT) in several models are comparatively investigated by molecular dynamics simulations to explore the cooperative mechanism of clotrimazoles in P450. Our results suggest that when P450 only accommodates the active CLT (CLT1), CLT1 continually diffuses away from heme, and the partial BC loop (residues 73-88) and the extended FG loop (residues 173-186) first close and then open. When the enzyme binds to two CLT molecules, CLT1 basically keeps close to heme, and the partial BC loop and the extended FG loop move close to each other. Clearly, the effector CLT (CLT2) plays a cooperative role in the inhibition of CLT1 on P450. CLT2 restrains the dissociation of CLT1 first through direct π-π stacking interactions and then through the rearranged binding site induced by CLT2. The presence of CLT1 can help to stabilize the protein structure around CLT2 by interacting with M86, Q173, and M174.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.