Abstract

• A cooperative game approach for energy scheduling of multi-microgrid systems. • Applying shapley value to fairly allocate multi-microgrid system cost between microgrids. • Considering the uncertainties related to the demand, renewable outputs, and market prices. • Enhancing the flexibility of the multi-microgrid system by energy transactions of microgrids. • Deliberating a price-based demand response to facilitate the cost-saving of microgrids. This paper proposes a cooperative game to schedule the day-ahead operation of multi-microgrid (MMG) systems. In the proposed model, microgrids are scheduled to achieve a global optimum for the cost of the multi-microgrid system. The minimum cost is achieved by transactions of microgrids with each other. Also, price-based demand response is implemented in the model to build a cost-reducing opportunity for consumers. Applying Shapley value, the optimum cost of the MMG system is fairly allocated between microgrids. To enhance the confidence level of results, data uncertainties are incorporated into the model. The uncertainties of renewable outputs, demand, and prices of trading with the main grid are applied into the model. The presented model is developed as a mixed-integer nonlinear programming problem, and its efficiency is evaluated on a standard test system containing three microgrids. The cost of the MMG system when microgrids form a cooperative game is compared with the isolated status that microgrids do not transact energy with each other. The results indicate that the cost of the MMG is declined using the proposed cooperative model in comparison with the isolated mode. Also, the cost of microgrid1, microgrid2, and microgrid3 are improved by 2.4, 2.7, and 11.8%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.