Abstract
Rapid increase in number of cellular users and high demand for data has lead to the formation of multi-tier networks. Non-orthogonal multiple access (NOMA) has proved to be an efficient method to cater to the paradigm shift from 4G to 5G. This paper employs NOMA in an heterogeneous cellular network consisting of a macro base station (MBS) tier underlaid with femto base station (FBS) tier and device-to-device (D2D) tier, where NOMA is employed in FBS and D2D tier only. The congestion at the MBS tier is relieved by offloading macro users (MU) to the FBS tier. The offloaded MU are further supported by the D2D tier when the FBS tier fails to find a corresponding pairing user for the incoming offloaded MU. Since, absence of pairing user means outage for offloaded MU, D2D cooperation is employed, which decreases the rate outage probability by $86.87\%$ for the MU offloaded as cell edge user (CEU) in comparison to no cooperation. Also, a three times increase in ergodic rate and four times increase in sum ergodic rate for MU offloaded as CEU is achieved using cooperation from D2D tier. Verification of the results is done using Monte Carlo simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.