Abstract

There is a supermassive black hole of mass 4 × 106 solar masses at the centre of the Milky Way1,2. A large reservoir of hot (107 kelvin) and cooler (102 to 104 kelvin) gas surrounds it within a few parsecs3. Although constraints on the amount of hot gas in the accretion zone of the black hole-that is, within 105 Schwarzschild radii (0.04 parsecs)-have been provided by X-ray observations4-6, the mass in cooler gas has been unconstrained. One possible way this cooler gas could be detected is by its emission in hydrogen recombination spectral lines7,8. Here we report imaging of a 104-kelvin ionized gas disk within 2 × 104 Schwarzschild radii, using the 1.3-millimetre recombination line H30α. This emissionline is double-peaked, with fullvelocity linewidth of about 2,200 kilometres per second. The emission is centred on the radio source SagittariusA*, but the redshifted side is displaced 0.11 arcsec (0.004 parsecs at a distance of 8 kiloparsecs) to the northeast and the blueshifted side is displaced a similar distance to the southwest. We interpret these observations in terms of a rotating disk of mass 10-5 to 10-4 solar masses and mean hydrogen density of about 105 to 106 per cubic centimetre, with the values being sensitive to the assumed geometry. The emission is stronger than expected, given the upper limit on the strength of the Brγ spectral line of hydrogen. We suggest that the H30α transition is enhanced by maser emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call