Abstract

The aim of this work is to propose a classification algorithm to automatically detect treatment for scoliosis (brace, implant or no treatment) in postero-anterior radiographs. Such automatic labelling of radiographs could represent a step towards global automatic radiological analysis. Seven hundred and ninety-six frontal radiographies of adolescents were collected (84 patients wearing a brace, 325 with a spinal implant and 387 reference images with no treatment). The dataset was augmented to a total of 2096 images. A classification model was built, composed by a forward convolutional neural network (CNN) followed by a discriminant analysis; the output was a probability for a given image to contain a brace, a spinal implant or none. The model was validated with a stratified tenfold cross-validation procedure. Performance was estimated by calculating the average accuracy. 98.3% of the radiographs were correctly classified as either reference, brace or implant, excluding 2.0% unclassified images.99.7% of brace radiographs were correctly detected, while most of the errors occurred in the reference group (i.e. 2.1% of reference images were wrongly classified). The proposed classification model, the originality of which is the coupling of a CNN with discriminant analysis, can be used to automatically label radiographs for the presence of scoliosis treatment. This information is usually missing from DICOM metadata, so such method could facilitate the use of large databases. Furthermore, the same model architecture could potentially be applied for other radiograph classifications, such as sex and presence of scoliotic deformity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.