Abstract

Soil temperature is a critical parameter in soil science, agriculture, meteorology, hydrology, and water resources engineering, and its accurate and cost-effective determination and prediction are very important. Machine learning models are widely employed for surface, near-surface, and subsurface soil temperature predictions. The present study employed a properly designed one-dimensional convolutional neural network model to predict the hourly soil temperature at a subsurface depth of 0–7 cm. The annual input dataset for this model included eight hourly climatic features. The performance of this model was assessed using a wide range of evaluation metrics and compared to that of a multilayer perceptron model. A detailed sensitivity analysis was conducted on each feature to determine its importance in predicting the soil temperature. This analysis showed that air temperature had the greatest impact and surface thermal radiation had the least impact on soil temperature prediction. It was concluded that the one-dimensional convolutional model performed better than the multilayer perceptron model in predicting the soil temperature under both normal and hot weather conditions. The findings of this study demonstrated the capability of the model to predict the daily maximum soil temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call