Abstract
In this paper, a novel parameter estimation method based on a convolutional neural network (CNN) is proposed to extract geometrical features of radar objects. The CNN’s design is inspired by the inversion process of a physically relevant model, called the geometrical theory of diffraction (GTD) model, whose bistatic form can be used to describe the bistatic scattering response from the target in the netted radar system. This model-inspired inversion method can automatically compensate for phase errors between multiple signal channels and obtain better parameter estimation performance than traditional methods, such as the orthogonal matching pursuit (OMP), the estimation of signal parameters via rotational invariance techniques (ESPRIT) and the multiple signal classification (MUSIC). The experimental results not only verify the validity of the proposed intelligent inversion method but also demonstrate the interpretability and generalization ability of the CNN, whose architecture is designed based on mathematical derivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.