Abstract

We propose a novel approach to the problem of inverse kinematics for possibly redundant planar manipulators. We show that, by considering the joints as point masses in a fictitious gravity field, and by adding proper constraints to take into account the length of the links, the kinematic inversion may be cast as a convex programming problem. Convex constraints in the decision variables (in particular, linear constraints in the workspace) are easily managed with the proposed approach. We also show how to exploit the idea for avoiding obstacles while tracking a reference end-effector trajectory and discuss how to extend the results to some kinds of non-planar manipulators. Simulation results are reported, showing the effectiveness of the approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call