Abstract
In this paper we present a convex optimization problem for solving the rational covariance extension problem. Given a partial covariance sequence and the desired zeros of the modeling filter, the poles are uniquely determined from the unique minimum of the corresponding optimization problem. In this way we obtain an algorithm for solving the covariance extension problem, as well as a constructive proof of Georgiou's seminal existence result and his conjecture, a stronger version of which we have resolved in [Byrnes et al., IEEE Trans. Automat. Control, AC-40 (1995), pp. 1841--1857].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.