Abstract

We address the day-ahead pump scheduling problem for a class of branched water networks with one pumping station raising water to tanks at different places and levels. This common class is representative of rural drinking water distribution networks, though not exclusively so. Many sophisticated heuristic algorithms have been designed to tackle the challenging general problem. By focusing on a class of networks, we show that a pure model-based approach relying on a tractable mathematical program is pertinent for real-size applications. The practical advantages of this approach are that it produces optimal or near-optimal solutions with performance guarantees in near real-time, and that it is replicable without algorithmic development. We apply the approach to a real drinking water supply system and compare it to the current operational strategy based on historical data. An extensive empirical analysis assesses the financial and practical benefits: (1) it achieves significant savings in terms of operation costs and energy consumption, (2) its robustness to dynamic pricing means that demand-response can be efficiently implemented in this type of energy-intensive utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.