Abstract

In this paper, a reconfiguration guidance algorithm for formation flying spacecraft is presented. The formation reconfiguration guidance problem is first formulated as a continuous-time minimum-fuel or minimum-energy optimal control problem with collision avoidance and control constraints. The optimal control problem is then discretized to obtain a finite dimensional parameter optimization problem. In this formulation, the collision avoidance constraints are imposed via separating planes between each pair of spacecraft. A heuristic is introduced to choose these separating planes that leads to the convexification of the collision avoidance constraints. Additionally, convex constraints are imposed to guarantee that no collisions occur between discrete time samples. The resulting finite dimensional optimization problem is a second order cone program, for which standard algorithms can compute the global optimum with deterministic convergence and a prescribed level of accuracy. Consequently, the formation reconfiguration algorithm can be implemented onboard a spacecraft for real-time operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call