Abstract
Explosive growth of multimedia data has brought challenge of how to efficiently browse, retrieve and organize these data. Under this circumstance, different approaches have been proposed to facilitate multimedia analysis. Several semi-supervised feature selection algorithms have been proposed to exploit both labeled and unlabeled data. However, they are implemented based on graphs, such that they cannot handle large-scale datasets. How to conduct semi-supervised feature selection on large-scale datasets has become a challenging research problem. Moreover, existing multi-label feature selection algorithms rely on eigen-decomposition with heavy computational burden, which further prevent current feature selection algorithms from being applied for big data. In this paper, we propose a novel convex semi-supervised multi-label feature selection algorithm, which can be applied to large-scale datasets. We evaluate performance of the proposed algorithm over five benchmark datasets and compare the results with state-of-the-art supervised and semi-supervised feature selection algorithms as well as baseline using all features. The experimental results demonstrate that our proposed algorithm consistently achieve superiors performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.