Abstract

We present a converse Lyapunov result for non-linear time-varying systems that are uniformly semiglobally asymptotically stable. This stability property pertains to the case when the size of initial conditions may be arbitrarily enlarged and the solutions of the system converge, in a stable way, to a closed ball that may be arbitrarily diminished by tuning a design parameter of the system typically but not exclusively, a control gain). This result is notably useful in cascaded-based control when uniform practical asymptotic stability is established without a Lyapunov function, e.g. via averaging. We provide a concrete example by solving the stabilization problem of a hovercraft.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.