Abstract
The ability to realize flexible circuits integrating sensing, signal processing, and communicating capabilities is of central importance for the development of numerous nomadic applications requiring foldable, stretchable, and large area electronics. A key challenge is, however, to combine high electrical performance (i.e., millimeter wave, low noise electronics) with mechanical flexibility required for chip form adaptivity in addition to highly stable electrical performance upon deformation. Here, we describe a solution based on ultimate thinning and transfer onto a plastic foil of high frequency CMOS devices initially processed on conventional silicon-on-insulator wafers. We demonstrate a methodology relying on neutral plane engineering to provide high performance stability upon bending, by locating the active layer, i.e., the transistor channel, at the neutral fiber of the flexible system. Following this strategy, record frequency performance of flexible n-MOSFETs, featuring fT/fMAX of 120/145 GHz, is reported with relative variations limited to less than 5% even under aggressive bending on cylinders with curvature radii down to 12.5 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.