Abstract
Mucins are a class of highly O-glycosylated proteins found on the surface of cells in epithelial tissues. O-Glycosylation is crucial for the functionality of mucins and changes therein can have severe consequences for an organism. With that in mind, the elucidation of interactions of carbohydrate binding proteins with mucins, whether in morbidly altered or unaltered conditions, continue to shed light on mechanisms involved in diseases like chronic inflammations and cancer. Despite the known importance of type-1 and type-2 elongated mucin cores 1-4 in glycobiology, the corresponding type-1 structures are much less well studied. Here, the first chemical synthesis of extended mucin type-1 O-glycan core 1-3 amino acid structures based on a convergent approach is presented. By utilizing differentiation in acceptor reactivity, shared early stage Tn- and T-acceptor intermediates were elongated with a common type-1 [β-D-Gal-1,3-β-D-GlcNAc] disaccharide, which allows for straightforward preparation of diverse glycosylated amino acids carrying the type-1 mucin core 1-3 saccharides. The obtained glycosylated 9-fluorenylmethoxycarbonyl (Fmoc)-protected amino acid building blocks were employed in synthesis of type-1 mucin glycopeptides, which are useful in biological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.