Abstract

A convergent numerical method for α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document}-dissipative solutions of the Hunter–Saxton equation is derived. The method is based on applying a tailor-made projection operator to the initial data, and then solving exactly using the generalized method of characteristics. The projection step is the only step that introduces any approximation error. It is therefore crucial that its design ensures not only a good approximation of the initial data, but also that errors due to the energy dissipation at later times remain small. Furthermore, it is shown that the main quantity of interest, the wave profile, converges in L∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^{\\infty }$$\\end{document} for all t≥0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$t \\ge 0$$\\end{document}, while a subsequence of the energy density converges weakly for almost every time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call