Abstract

We propose a nonconforming finite element method for isentropic viscous gas flow in situations where convective effects may be neglected. We approximate the continuity equation by a piecewise constant discontinuous Galerkin method. The velocity (momentum) equation is approximated by a finite element method on div-curl form using the nonconforming Crouzeix–Raviart space. Our main result is that the finite element method converges to a weak solution. The main challenge is to demonstrate the strong convergence of the density approximations, which is mandatory in view of the nonlinear pressure function. The analysis makes use of a higher integrability estimate on the density approximations, an equation for the “effective viscous flux,” and renormalized versions of the discontinuous Galerkin method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.