Abstract

A convex decomposition method, called Alternating Sum of Volumes (ASV), uses convex hulls and set difference operations. ASV decomposition, however, may not converge, which severely limits the domain of geometric objects that the current method can handle. We investigate the cause of non-convergence and present a remedy; we propose a new convex decomposition called Alternating Sum of Volumes with Partitioning (ASVP) and prove its convergence. ASVP decomposition is a hierarchical volumetric representation which is obtained from the boundary information of the given object based on convexity. As an application, from feature recognition by ASVP decomposition if briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.